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NOTE

Two Comments on Filtering (Artificial Viscosity)
for Chebyshev and Legendre Spectral and

Spectral Element Methods: Preserving
Boundary Conditions and Interpretation

of the Filter as a Diffusion

A common strategy for reducing numerical noise with a Chebyshev or Legendre spectral
method is to filter the coefficients, that is, to replace the truncated Chebyshev seriesuN by
its filtrateuF (N),

uN(x) =
N∑

j=0

aj Tj (x)→ uF (x; N) =
N∑

j=0

ajσ( j/N)Tj (x) (1)

for some filter functionσ(θ). The rationale for filtering and choices of goodσ are reviewed
in [2, 7, 11].

Unfortunately, filtering violates boundary conditions. For example, ifuN(±1) = 0, the
filtered function is not zero at both endpoints except in special cases. The goal of this note
is to propose a simple modification to filtering so thatuF (x) satisfies the same boundary
conditions asuN(x).

The key idea is to rewriteuN(x) in terms of new basis functionsφ j (x)which individually
satisfy homogeneous boundary conditions and then apply the filter to modify the coefficients
bj of this new expansion. One can multiply the coefficients of these basis functions by
arbitrary numbers without disturbing the boundary conditions. The filtered sum can then
be converted back into the original Chebyshev or Legendre basis.

There are several technical details. The first is: What if the boundary conditions are
inhomogeneous? The answer is that one can split the solutionu(x) into the sum of a low
degree polynomial which satisfies the inhomogeneous boundary conditions plus a sum over
the basis functionsφ j that satisfy the equivalent homogeneous boundary conditions.

To explain the idea, it is sufficient to specialize to Dirichlet boundary conditions:

u(−1) = α; u(1) = β. (2)

If the basis functions are chosen so that they satisfy homogeneous Dirichlet boundary
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conditions, that is,

φ j (±1) = 0 (3)

then without approximation one may write

uN(x) = (α + β)/2+ (β − α)x/2+
N∑

j=2

bjφ j (x). (4)

It is easy to construct low degree polynomials which fit the inhomogeneous boundary
conditions—for very general boundary conditions—as described in the author’s book [1,
3]. In more than one space dimension, one can use “transfinite interpolation” [3, 6, 12].

The second technical detail is: Which basis should one use? There is an infinite number of
linear combinations of Chebyshev polynomials that satisfy each set of boundary conditions.
For homogeneous Dirichlet conditions such as (3), one such basis is

φ2 j (x) ≡ T2 j (x)− T0; φ2 j+1(x) ≡ T2 j+1(x)− T1. (5)

However, if we filtered the coefficients in this basis, any changes in high degree Chebyshev
coefficients would also cause changes in the very lowest Chebyshev coefficients (those of
T0 andT1). This is very unsatisfactory for filtering.

Heinrichs [8–10] has shown that the basis

φ j (x) ≡ (1− x2)Tj (x) = 1

4
{2Tj (x)− T| j−2|(x)− Tj+2(x)} (6)

greatly reduces roundoff error because the maximum values of its second derivative at and
near the endpoints is onlyO( j 2) versusO( j 4) for the first basis or for the Chebyshev
polynomials themselves. However, this basis has the modest defect that each element is a
weighted sum ofthreeChebyshev polynomials, as can be shown by using the recurrence
relation for the Chebyshev polynomials, so it is more expensive to convert to and from an
ordinary Chebyshev series.

The third basis, and the one we shall analyze, is

φ j (x) ≡ Tj+2(x)− Tj (x). (7)

Let b̄ j andāj denote the filtered coefficients in theφ and Chebyshev series, respectively,
and letσ j = σ( j/N). Then, given only the unfiltered Chebyshev coefficientsaj , both the
unfilteredφ coefficients and the filtered Chebyshev coefficients can be computed in a single
loop. The even and odd degree coefficients are uncoupled and may be computed either
separately or together. For simplicity, we give only a single set of formulas which apply to
either even or odd whereN is to be interpreted as the degree of the largest coefficient of the
appropriate parity.

The initialization is

λ = σN−2 aN, bN−2 = aN, āN = λ, ρ = λ (8)
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and the loop, which is executed with indexj starting from(N − 2) in steps of (−2) until j
is the smallest integer of the appropriate parity which is larger than 1:

bj−2 = bj + aj , j = (N − 2), (N − 4), . . . , jmin > 1

λ = σ j−2 bj−2

āj = λ− ρ
ρ = λ. (9)

Note that the two lowest Chebyshev coefficients,a0 anda1, are not changed by the filtering.
Similar basis functions for more general boundary conditions can be invented using the

exact formula for the endpoint derivatives of the Chebyshev polynomials:

dpTn

dxp
(±1) = (±1)n+p

p−1∏
k=0

n2− k2

2k+ 1
. (10)

Thus, a basis satisfying homogeneous Neuman boundary conditions is

φ j = j 2

( j + 2)2
Tj+2(x)− Tj (x), j = 0, 1, . . . . (11)

Again, one can calculate the filtered from the unfiltered coefficients in a single loop.
The Legendre polynomials, like the Chebyshev, are normalized so thatPj (±1) = (±1) j .

Thus, a good basis that satisfies homogeneous Dirichlet conditions is

φ j (x) = Pj+2(x)− Pj (x) (12)

and the Chebyshev formula for computing the filtered coefficients, (8) plus (9), applies
without modification.

Our second comment is that there is an underlying philosophical question which has been
glossed over above: How many boundary conditions are needed when filtering is imposed?
The reason that this is a non-trivial issue is that filtering can be interpreted as adding a
damping term to the original equations of motion.

Even though the filtering may be performed as a separate procedure between time steps,
without benefit of the usual time-integration schemes, sequential operations are equivalent
to simultaneous operations if the time step is sufficiently small. That is to say, ifut = L(u)
is the original undamped equation or system of equations and if the operatorV is chosen
so that the effect of the filter is equivalent to integrating the linear problemut =V u over
an interval of one time stepτ , then the solution of

ut = Lu, t ∈ [0, τ ]

vt = Vv, t ∈ [0, τ ], v(0) = u(τ ) (13)

is equivalent to the solution of the damped system

wt = Lw + Vw, t ∈ [0, τ ], w(0) = u(0) (14)
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in the sense that

w(τ) = v(τ)+ O(τ 2). (15)

For example, in the Fourier basis{exp(i j x )}, the filterσ j = 1− ντ j 6 is equivalent to
adding the damping term

V ≡ νuxxxxxx. (16)

It is because of this equivalence that “filtering-every-time-step” and “artificial viscosity” are
often used loosely as synonyms even though there is a difference, both to the programmer
and the mathematician, between adding a damping term to the equations of motion or coding
the dissipation as a separate subroutine that is applied between time steps.

Fourier series are normally used only with periodic boundary conditions, so the fact that
the sixth derivative has raised the order of the system of partial differential equations does
not cause difficulties for the trigonometric basis. However, similar artificial damping terms
are often used with non-trigonometric basis sets, too. If the damping raises the order of the
differential equations, how can we imposeonly the original Dirichlet boundary conditions
and still obtain a well-posed numerical problem?

A partial answer is that if we apply the filter analogous to a sixth-order hyperviscosity to
a Legendre basis, the differential operator is

V ≡ µ{[(1− x2)ux]x}3↔ σ j = 1− τν[ j ( j + 1)]3 (17)

since the operatorV is just the cube of the eigenoperator for Legendre polynomials:

[(1− x2)Pj,x]x = − j ( j + 1)Pj . (18)

The Legendre operator has the form of a viscosity operator, i.e., [µ(x)ux]x, but with a
viscosityµ(x) = 1− x2 which goes to zero at the boundaries!

This seems very weird and counterintuitive, but the spatial variation of the viscosity
actually solves two important numerical difficulties. The first is that the more obvious
choice of a damping which is proportional simply to the second derivative operator or to
higher powers of the second derivative operator gives a Chebyshev or Legendre discretiza-
tion matrix which is very poorly conditioned; with a truncation atN polynomials, the
largest eigenvalue isO(N4) for the second derivative,O(N8) for the fourth derivative, etc.,
[1, 3–5]. This not only amplifies the roundoff error, but requires an extremely short time
step unless the damping constantν is very small, in which case the lower Chebyshev or
Legendre polynomials are not damped or filtered at all. In contrast, the powers of the Legen-
dre operator have maximum eigenvalues which are roughly the square root of the derivative
matrix of the same order—O(N6) for the sixth order Legendre damping versusO(N12) for
a sixth derivative dissipation.

The second reward for using the Legendre eigenoperator is that it issingular at the
endpoints. This would hardly seem to be a virtue, but because the operator is singular,
numerical boundary conditions are not needed, regardless of how many times the Legendre
operator is squared or cubed. Instead, the proper boundary conditions are merely that the
solution should be analytic at the endpoints in spite of the singularities in the differential
equation. The sum ofN Legendre polynomials automatically satisfies these behavioral
boundary conditions, so no explicit constraints are needed.
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Thus, when an artificial damping in the form of the cube of the Legendre eigenoperator is
added to a problem whose inviscid form is second order and needs only Dirichlet boundary
conditions, it is not necessary to add two additional boundary conditions at each endpoint
for mathematical well-posedness. Rather, one mustdrop the Dirichlet boundary conditions
of the inviscid conditions. Indeed, this is the whole point of the first half of this note: if one
applies a filter to a Chebyshev or Legendre basis without taking special steps to enforce
the boundary conditions, then the artificial viscosity will alter the boundary values of the
solutions at each time step.

The modified, boundary-preserving filtering described above can be probably expressed
in terms of powers or a series of powers of a differential operator which is non-singular
at the boundaries and has as its eigenfunctionsφ j = Pj+2 − Pj where thePj (x) are the
Legendre polynomials. Unfortunately, we have not been sufficiently clever to find a closed
form for such an eigenoperator and perhaps no simple form exists.

Nevertheless, the loss of all boundary conditions when the damping is expressed in
terms of the Legendre eigenproblem (without the recursion above for preserving boundary
conditions) shows that additional boundary conditions are not necessarily needed when
adding an artificial viscosity or filtering.

Similar remarks apply with Chebyshev polynomials. The Chebyshev eigenoperator√
1− x2 [

√
1− x2Tn,x]x = −n2Tn (19)

is not quite in the form of a fluid mechanical viscosity with a spatially varying viscosity
coefficient. Nevertheless, the same mathematical and numerical arguments apply.

It still seems peculiar from a physical viewpoint that the “good” numerical dissipation is
one that goes to zero at the endpoints, precisely where all right-thinking fluid dynamicists
expect boundary layers. This, however, is precisely the point: if the artificial damping did not
vanish at the endpoints, it would introduce spurious boundary layers and require additional,
unphysical boundary conditions. If the physics requires a boundary layer, we should add a
second derivative with a physically determined viscosity coefficient to provide it, and let
the sixth order, artificial viscosity go to zero at the endpoints to leave the physical boundary
layer untouched.

The overall conclusion is that if filtering is done properly, we can add an artificial viscosity
to a computation using Chebyshev or Legendre polynomials and still preserve the original
boundary conditions. Nothing more complicated than a single DO loop is required; the
filter coefficientsσ j can be anything we wish; no spurious extra boundary conditions are
necessary.
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